Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.728
1.
Sci Rep ; 14(1): 10586, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719951

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Carotenoids , Gene Expression Regulation, Plant , Lycium , Nicotiana , Plant Proteins , Salt Tolerance , Carotenoids/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Salt Tolerance/genetics , Lycium/genetics , Lycium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Photosynthesis/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Abscisic Acid/metabolism
3.
Theor Appl Genet ; 137(6): 120, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709310

KEY MESSAGE: There is variation in stay-green within barley breeding germplasm, influenced by multiple haplotypes and environmental conditions. The positive genetic correlation between stay-green and yield across multiple environments highlights the potential as a future breeding target. Barley is considered one of the most naturally resilient crops making it an excellent candidate to dissect the genetics of drought adaptive component traits. Stay-green, is thought to contribute to drought adaptation, in which the photosynthetic machinery is maintained for a longer period post-anthesis increasing the photosynthetic duration of the plant. In other cereal crops, including wheat, stay-green has been linked to increased yield under water-limited conditions. Utilizing a panel of diverse barley breeding lines from a commercial breeding program we aimed to characterize stay-green in four environments across two years. Spatiotemporal modeling was used to accurately model senescence patterns from flowering to maturity characterizing the variation for stay-green in barley for the first time. Environmental effects were identified, and multi-environment trait analysis was performed for stay-green characteristics during grain filling. A consistently positive genetic correlation was found between yield and stay-green. Twenty-two chromosomal regions with large effect haplotypes were identified across and within environment types, with ten being identified in multiple environments. In silico stacking of multiple desirable haplotypes showed an opportunity to improve the stay-green phenotype through targeted breeding. This study is the first of its kind to model barley stay-green in a large breeding panel and has detected novel, stable and environment specific haplotypes. This provides a platform for breeders to develop Australian barley with custom senescence profiles for improved drought adaptation.


Droughts , Haplotypes , Hordeum , Phenotype , Plant Breeding , Hordeum/genetics , Hordeum/growth & development , Environment , Photosynthesis/genetics , Quantitative Trait Loci , Chromosome Mapping
4.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696020

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Chlorophyll , Cucumis sativus , Gene Expression Regulation, Plant , Photosynthesis , Salt Stress , Salt Tolerance , Seedlings , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/physiology , Cucumis sativus/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Gene Expression Regulation, Plant/drug effects , Salt Tolerance/genetics , Salt Stress/genetics , Chlorophyll/metabolism , Photosynthesis/genetics , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Gene Silencing
5.
Plant Signal Behav ; 19(1): 2347783, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38699898

As sessile organisms, plants have evolved complex signaling mechanisms to sense stress and acclimate. This includes the use of reactive oxygen species (ROS) generated during dysfunctional photosynthesis to initiate signaling. One such ROS, singlet oxygen (1O2), can trigger retrograde signaling, chloroplast degradation, and programmed cell death. However, the signaling mechanisms are largely unknown. Several proteins (e.g. PUB4, OXI1, EX1) are proposed to play signaling roles across three Arabidopsis thaliana mutants that conditionally accumulate chloroplast 1O2 (fluorescent in blue light (flu), chlorina 1 (ch1), and plastid ferrochelatase 2 (fc2)). We previously demonstrated that these mutants reveal at least two chloroplast 1O2 signaling pathways (represented by flu and fc2/ch1). Here, we test if the 1O2-accumulating lesion mimic mutant, accelerated cell death 2 (acd2), also utilizes these pathways. The pub4-6 allele delayed lesion formation in acd2 and restored photosynthetic efficiency and biomass. Conversely, an oxi1 mutation had no measurable effect on these phenotypes. acd2 mutants were not sensitive to excess light (EL) stress, yet pub4-6 and oxi1 both conferred EL tolerance within the acd2 background, suggesting that EL-induced 1O2 signaling pathways are independent from spontaneous lesion formation. Thus, 1O2 signaling in acd2 may represent a third (partially overlapping) pathway to control cellular degradation.


Arabidopsis Proteins , Arabidopsis , Chloroplasts , Mutation , Signal Transduction , Singlet Oxygen , Arabidopsis/genetics , Arabidopsis/metabolism , Singlet Oxygen/metabolism , Chloroplasts/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Signal Transduction/genetics , Mutation/genetics , Photosynthesis/genetics
6.
Proc Natl Acad Sci U S A ; 121(21): e2318690121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739791

Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.


Gene Expression Regulation, Bacterial , Photosynthesis , Photosynthesis/genetics , Circadian Clocks/genetics , Biotechnology/methods , Cyanobacteria/genetics , Cyanobacteria/metabolism , Promoter Regions, Genetic , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
7.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732247

To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.


Fruit , Gene Expression Regulation, Plant , Photosynthesis , Plant Proteins , Sugars , Vitis , Vitis/genetics , Vitis/metabolism , Vitis/radiation effects , Fruit/genetics , Fruit/metabolism , Fruit/radiation effects , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sugars/metabolism , Light
8.
BMC Plant Biol ; 24(1): 393, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741080

BACKGROUND: 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and changes in the transcriptome were recorded until 5 days post infiltration. RESULTS: The RNA-seq analysis revealed that presence of SAP11CaPm in leaves leads to downregulation of genes involved in defense response and related to photosynthetic processes, while expression of genes involved in energy production was enhanced. CONCLUSIONS: The results indicate that early SAP11CaPm expression might be important for the colonization of the host plant since phytoplasmas lack many metabolic genes and are thus dependent on metabolites from their host plant.


Bacterial Proteins , Gene Expression Regulation, Plant , Nicotiana , Photosynthesis , Phytoplasma , Plant Diseases , Plant Leaves , Nicotiana/genetics , Nicotiana/microbiology , Phytoplasma/physiology , Plant Leaves/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Photosynthesis/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Energy Metabolism/genetics
9.
Physiol Plant ; 176(3): e14316, 2024.
Article En | MEDLINE | ID: mdl-38686633

The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.


Cyanobacteria , Metabolic Engineering , Photosynthesis , Metabolic Engineering/methods , Cyanobacteria/metabolism , Cyanobacteria/genetics , Photosynthesis/genetics , Carbon Dioxide/metabolism
10.
Microb Genom ; 10(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38625719

Genome sequencing and assembly of the photosynthetic picoeukaryotic Picochlorum sp. SENEW3 revealed a compact genome with a reduced gene set, few repetitive sequences, and an organized Rabl-like chromatin structure. Hi-C chromosome conformation capture revealed evidence of possible chromosomal translocations, as well as putative centromere locations. Maintenance of a relatively few selenoproteins, as compared to similarly sized marine picoprasinophytes Mamiellales, and broad halotolerance compared to others in Trebouxiophyceae, suggests evolutionary adaptation to variable salinity environments. Such adaptation may have driven size and genome minimization and have been enabled by the retention of a high number of membrane transporters. Identification of required pathway genes for both CAM and C4 photosynthetic carbon fixation, known to exist in the marine mamiellale pico-prasinophytes and seaweed Ulva, but few other chlorophyte species, further highlights the unique adaptations of this robust alga. This high-quality assembly provides a significant advance in the resources available for genomic investigations of this and other photosynthetic picoeukaryotes.


Genomics , Photosynthesis , Chromosome Mapping , Photosynthesis/genetics , Chromosomes , Chromatin/genetics
11.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674041

Cold stress adversely impacts grape growth, development, and yield. Therefore, improving the cold tolerance of grape is an urgent task of grape breeding. The Jasmonic acid (JA) pathway responsive gene JAZ plays a key role in plant response to cold stress. However, the role of JAZ in response to low temperatures in grape is unclear. In this study, VvJAZ13 was cloned from the 'Pinot Noir' (Vitis vinefera cv. 'Pinot Noir') grape, and the potential interacting protein of VvJAZ13 was screened by yeast two-hybrid (Y2H). The function of VvJAZ13 under low temperature stress was verified by genetic transformation. Subcellular localization showed that the gene was mainly expressed in cytoplasm and the nucleus. Y2H indicated that VvF-box, VvTIFY5A, VvTIFY9, Vvbch1, and VvAGD13 may be potential interacting proteins of VvJAZ13. The results of transient transformation of grape leaves showed that VvJAZ13 improved photosynthetic capacity and reduced cell damage by increasing maximum photosynthetic efficiency of photosystem II (Fv/Fm), reducing relative electrolyte leakage (REL) and malondialdehyde (MDA), and increasing proline content in overexpressed lines (OEs), which played an active role in cold resistance. Through the overexpression of VvJAZ13 in Arabidopsis thaliana and grape calli, the results showed that compared with wild type (WT), transgenic lines had higher antioxidant enzyme activity and proline content, lower REL, MDA, and hydrogen peroxide (H2O2) content, and an improved ability of scavenging reactive oxygen species. In addition, the expression levels of CBF1-2 and ICE1 genes related to cold response were up-regulated in transgenic lines. To sum up, VvJAZ13 is actively involved in the cold tolerance of Arabidopsis and grape, and has the potential to be a candidate gene for improving plant cold tolerance.


Arabidopsis , Cold-Shock Response , Plant Proteins , Vitis , Arabidopsis/genetics , Arabidopsis/metabolism , Cold Temperature , Cold-Shock Response/genetics , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Vitis/genetics , Vitis/metabolism
12.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664694

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Camellia sinensis , Circadian Rhythm , Photosynthesis , Photosynthesis/genetics , Camellia sinensis/genetics , Camellia sinensis/physiology , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Multigene Family , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/metabolism , Photoperiod
13.
Physiol Plant ; 176(2): e14289, 2024.
Article En | MEDLINE | ID: mdl-38606618

Albino plants display partial or complete loss of photosynthetic pigments and defective thylakoid membrane development, consequently impairing plastid function and development. These distinctive attributes render albino plants excellent models for investigating chloroplast biogenesis. Despite their potential, limited exploration has been conducted regarding the molecular alterations underlying these phenotypes, extending beyond photosynthetic metabolism. In this study, we present a novel de novo transcriptome assembly of an albino somaclonal variant of Agave angustifolia Haw., which spontaneously emerged during the micropropagation of green plantlets. Additionally, RT-qPCR analysis was employed to validate the expression of genes associated with chloroplast biogenesis, and plastome copy numbers were quantified. This research aims to gain insight into the molecular disruptions affecting chloroplast development and ascertain whether the expression of critical genes involved in plastid development and differentiation is compromised in albino tissues of A. angustifolia. Our transcriptomic findings suggest that albino Agave plastids exhibit high proliferation, activation of the protein import machinery, altered transcription directed by PEP and NEP, dysregulation of plastome expression genes, reduced expression of photosynthesis-associated nuclear genes, disruption in the tetrapyrrole and carotenoid biosynthesis pathway, alterations in the plastid ribosome, and an increased number of plastome copies, among other alterations.


Agave , Agave/genetics , Chloroplasts/metabolism , Photosynthesis/genetics , Plastids/genetics , Plastids/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics
14.
BMC Plant Biol ; 24(1): 235, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38561649

Drought stress considered a key restrictive factor for a warm-season bermudagrass growth during summers in China. Genotypic variation against drought stress exists among bermudagrass (Cynodon sp.), but the selection of highly drought-tolerant germplasm is important for its growth in limited water regions and for future breeding. Our study aimed to investigate the most tolerant bermudagrass germplasm among thirteen, along latitude and longitudinal gradient under a well-watered and drought stress condition. Current study included high drought-resistant germplasm, "Tianshui" and "Linxiang", and drought-sensitive cultivars; "Zhengzhou" and "Cixian" under drought treatments along longitude and latitudinal gradients, respectively. Under water deficit conditions, the tolerant genotypes showed over-expression of a dehydrin gene cdDHN4, antioxidant genes Cu/ZnSOD and APX which leads to higher antioxidant activities to scavenge the excessive reactive oxygen species and minimizing the membrane damage. It helps in maintenance of cell membrane permeability and osmotic adjustment by producing organic osmolytes. Proline an osmolyte has the ability to keep osmotic water potential and water use efficiency high via stomatal conductance and maintain transpiration rate. It leads to optimum CO2 assimilation rate, high chlorophyll contents for photosynthesis and elongation of leaf mesophyll, palisade and thick spongy cells. Consequently, it results in elongation of leaf length, stolon and internode length; plant height and deep rooting system. The CdDHN4 gene highly expressed in "Tianshui" and "Youxian", Cu/ZnSOD gene in "Tianshui" and "Linxiang" and APX gene in "Shanxian" and "Linxiang". The genotypes "Zhongshan" and "Xiaochang" showed no gene expression under water deficit conditions. Our results indicate that turfgrass show morphological modifications firstly when subjected to drought stress; however the gene expression is directly associated and crucial for drought tolerance in bermudagrass. Hence, current research has provided excellent germplasm of drought tolerant bermudagrass for physiological and molecular study and future breeding.


Antioxidants , Cynodon , Cynodon/physiology , Antioxidants/metabolism , Droughts , Plant Breeding , Photosynthesis/genetics , Water/metabolism , Gene Expression
15.
Theor Appl Genet ; 137(5): 96, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589730

KEY MESSAGE: A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.


Genome-Wide Association Study , Glycine max , Glycine max/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Photosynthesis/genetics , Chlorophyll/metabolism
16.
Funct Plant Biol ; 512024 Apr.
Article En | MEDLINE | ID: mdl-38640358

Transgenic Arabidopsis thaliana (ecotype Columbia) was successfully transformed with the gene fructose-1,6-bisphosphatase (FBPas e) and named as AtFBPase plants. Transgenic plants exhibited stable transformation, integration and significantly higher expressions for the transformed gene. Morphological evaluation of transgenic plants showed increased plant height (35cm), number of leaves (25), chlorophyll contents (28%), water use efficiency (increased from 1.5 to 2.6µmol CO2 µmol-1 H2 O) and stomatal conductance (20%), which all resulted in an enhanced photosynthetic rate (2.7µmolm-2 s-1 ) compared to wild type plants. This study suggests the vital role of FBPase gene in the modification of regulatory pathways to enhance the photosynthetic rate, which can also be utilised for economic crops in future.


Arabidopsis , Arabidopsis/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Fructose/metabolism , Photosynthesis/genetics , Chlorophyll/genetics , Chlorophyll/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
17.
Mol Plant ; 17(5): 747-771, 2024 May 06.
Article En | MEDLINE | ID: mdl-38614077

Macroalgae are multicellular, aquatic autotrophs that play vital roles in global climate maintenance and have diverse applications in biotechnology and eco-engineering, which are directly linked to their multicellularity phenotypes. However, their genomic diversity and the evolutionary mechanisms underlying multicellularity in these organisms remain uncharacterized. In this study, we sequenced 110 macroalgal genomes from diverse climates and phyla, and identified key genomic features that distinguish them from their microalgal relatives. Genes for cell adhesion, extracellular matrix formation, cell polarity, transport, and cell differentiation distinguish macroalgae from microalgae across all three major phyla, constituting conserved and unique gene sets supporting multicellular processes. Adhesome genes show phylum- and climate-specific expansions that may facilitate niche adaptation. Collectively, our study reveals genetic determinants of convergent and divergent evolutionary trajectories that have shaped morphological diversity in macroalgae and provides genome-wide frameworks to understand photosynthetic multicellular evolution in aquatic environments.


Genomics , Photosynthesis , Seaweed , Seaweed/genetics , Photosynthesis/genetics , Phylogeny , Microalgae/genetics , Microalgae/cytology , Biological Evolution
18.
Plant Mol Biol ; 114(3): 40, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622367

Parasitic lifestyle can often relax the constraint on the plastome, leading to gene pseudogenization and loss, and resulting in diverse genomic structures and rampant genome degradation. Although several plastomes of parasitic Cuscuta have  been reported, the evolution of parasitism in the family Convolvulaceae which is linked to structural variations and reduction of plastome has not been well investigated. In this study, we assembled and collected 40 plastid genomes belonging to 23 species representing four subgenera of Cuscuta and ten species of autotrophic Convolvulaceae. Our findings revealed nine types of structural variations and six types of inverted repeat (IR) boundary variations in the plastome of Convolvulaceae spp. These structural variations were associated with the shift of parasitic lifestyle, and IR boundary shift, as well as the abundance of long repeats. Overall, the degradation of Cuscuta plastome proceeded gradually, with one clade exhibiting an accelerated degradation rate. We observed five stages of gene loss in Cuscuta, including NAD(P)H complex → PEP complex → Photosynthesis-related → Ribosomal protein subunits → ATP synthase complex. Based on our results, we speculated that the shift of parasitic lifestyle in early divergent time promoted relaxed selection on plastomes, leading to the accumulation of microvariations, which ultimately resulted in the plastome reduction. This study provides new evidence towards a better understanding of plastomic evolution, variation, and reduction in the genus Cuscuta.


Convolvulaceae , Cuscuta , Genome, Plastid , Convolvulaceae/genetics , Cuscuta/genetics , Genes, Plant , Photosynthesis/genetics , Phylogeny , Evolution, Molecular
19.
J Biosci ; 492024.
Article En | MEDLINE | ID: mdl-38516912

Phototrophic organisms harbor two main bioenergetic hubs, photosynthesis and respiration, and these processes dynamically exchange and share metabolites to balance the energy of the cell. In microalgae and cyanobacteria, the crosstalk between the light-triggered reactions of photosynthesis and respiration is particularly prominent with respiratory O2 uptake which can be stimulated upon illumination. Since its discovery, this light-enhanced respiration has been proposed to be critical in dissipating the excess reducing power generated by photosynthesis. Importantly, the physiological role and putative molecular mechanism involved have just recently started to be understood. Here, we revisit the physiological functions and discuss possible molecular mechanisms of interactions between the photosynthetic and respiratory electron flows in microalgae and cyanobacteria.


Cyanobacteria , Photosynthesis , Electron Transport/genetics , Photosynthesis/genetics , Energy Metabolism , Respiration , Cyanobacteria/genetics
20.
Methods Mol Biol ; 2776: 3-20, 2024.
Article En | MEDLINE | ID: mdl-38502495

The emergence of thylakoid membranes in cyanobacteria is a key event in the evolution of all oxygenic photosynthetic cells, from prokaryotes to eukaryotes. Recent analyses show that they could originate from a unique lipid phase transition rather than from a supposed vesicular budding mechanism. Emergence of thylakoids coincided with the great oxygenation event, more than two billion years ago. The acquisition of semi-autonomous organelles, such as the mitochondrion, the chloroplast, and, more recently, the chromatophore, is a critical step in the evolution of eukaryotes. They resulted from primary endosymbiotic events that seem to share general features, i.e., an acquisition of a bacterium/cyanobacteria likely via a phagocytic membrane, a genome reduction coinciding with an escape of genes from the organelle to the nucleus, and, finally, the appearance of an active system translocating nuclear-encoded proteins back to the organelles. An intense mobilization of foreign genes of bacterial origin, via horizontal gene transfers, plays a critical role. Some third partners, like Chlamydia, might have facilitated the transition from cyanobacteria to the early chloroplast. This chapter further details our current understanding of primary endosymbiosis, focusing on primary chloroplasts, thought to have appeared over a billion years ago, and the chromatophore, which appeared around a hundred years ago.


Chromatophores , Cyanobacteria , Thylakoids/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Photosynthesis/genetics , Cyanobacteria/genetics , Cyanobacteria/metabolism , Eukaryota , Symbiosis/genetics
...